If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+22x^2=0
a = 22; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·22·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*22}=\frac{-2}{44} =-1/22 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*22}=\frac{0}{44} =0 $
| 4.8x-16x^2=0 | | -3.8x=47.50 | | 9+9+5x=53 | | (3x-2)^2=8 | | 54x^2-15x-25=0 | | -6q+8=32 | | 1-(3x-5)^2=0 | | x+0.12=7633.92 | | x-6x+3x+4x=0 | | 0=5x^2-17x+6 | | 2n^2+11n+4=0 | | 8x+4-6(x+1)=9x+2 | | (3/4)y=-9 | | 8g+18=34 | | (1/5)(-1/2)+1/4=x | | 5/8=(x-8)/(x-5) | | 4x^2+x=18 | | 1/2+5/7x=117/14 | | 2.6+p=7.9 | | 43-6x=15 | | X+0.25x=321.9 | | F(0)=8+4x | | 14x^2=40x+6 | | 4y+30=7+6y | | 1k+4=6k+4 | | (4x-3)/2=5 | | 2x^2-7x+49=0 | | 7(2n+2)=8(8n+3)+4 | | 7(x-3)-8=-7(-4+5)-7x | | (1)/(3)h-4((2)/(3)h-3)=(2)/(3)h-6 | | 420=12x90 | | -8(5v+5)=(-8v-8) |